Stereoselective Total Synthesis of (3*S*,5*S*)-1,7-Bis(4-hydroxyphenyl)heptane-3,5-diol, (3*S*,5*S*)-Alpinikatin, and Its Diastereoisomers

by Kunuru Venkatesham, Sudina Purushotham Reddy, Baggu Chinnababu, and Katragadda Suresh Babu*

Division of Natural Products Chemistry, Natural Products Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India (phone: +91-40-27191881; fax: +91-40-27160512; e-mail: suresh@iict.res.in)

Stereoselective synthesis of the diarylheptanoids, (3S,5S)-1,7-bis(4-hydroxyphenyl)heptane-3,5-diol (1), (3S,5S)-alpinikatin (3), and their diastereoisomers (2 and 4, resp.), was achieved from readily available 4-hydroxybenzaldehyde. The synthetic sequences involve *Browns*'s allylation and Et₂Zn mediated diastereoselective alkynylation reaction as key steps.

Introduction. – In recent decades, diarylheptanoids play an important role in medicinal and synthetic organic chemistry. Diarylheptanoids are structurally distinctive plant metabolites and have been mainly isolated from *Zingiber*, *Curcuma*, *Alpinia*, *Viscum*, *Alnus*, and *Myrica* species [1]. These diarylheptanoids are exhibiting a broad range of biological and pharmacological properties. Especially, linear diarylheptanoids show antiplatelet, anti-inflammatory, antiproliferative, cytotoxic, and prostaglandin- E_2 -inhibitory activities [2]. Diarylheptanoids, particularly linear diarylheptanoids with a 1,3-diol system, have attracted the attention of both biologists and chemists in recent years. (3*S*,5*S*)-1,7-Bis(4-hydroxyphenyl)heptane-3,5-diol (1; *Fig.*) was first isolated in 1996 by *Wu et al* [3a]. It was also isolated from the seeds of *Alpinia blepharocalyx* in 2001 by *Kadota* and co-workers [3b]. The structure of **1** was confirmed on the basis of its spectroscopic data, and it exhibits significant antiproliferative activity against murin colon 26-L5 carcinoma and human HT-1086 fibrosarcoma with *ED*₅₀ values of 12.8 and 94.4 μ M, respectively. (3*S*,5*S*)-Alpinikatin (**3**; *Fig.*), a structurally related linear

igare. Sintennes of anitymephanonas I

^{© 2015} Verlag Helvetica Chimica Acta AG, Zürich

diarylheptanoid, was isolated from the AcOEt extract of the seeds of *Alpinia* katsumadai by Seo and co-workers in 2011 [4]. In continuation of our program towards the synthesis of biologically active compounds [5], we developed a simple and flexible route to the total synthesis of (3S,5S)-1,7-bis(4-hydroxyphenyl)heptane-3,5-diol (1), (3S,5S)-Alpinikatin (3), and its C(5)-diastereoisomers 2 and 4, respectively, from commercially available 4-hydroxybenzaldehyde (5).

The target molecules 1-4 can be easily envisaged from the chiral homoallyl alcohol derivative **10**, which was prepared *via Brown*'s alkylation reaction of an aldehyde derived from 4-hydroxybenzaldehyde (**5**; *Scheme 1*).

Results and Discussion. – As outlined in *Schemes* 1-3, the syntheses of compounds 1-4 started with the commercially available starting material 4-hydroxybenzaldehyde (5). This aldehyde was converted to the unsaturated ester 6 according to a known procedure [6]. Reduction of the C=C bond in compound 6 with $NiCl_2 \cdot 6 H_2O/NaBH_4$ in MeOH afforded the saturated ester 7 in 92% yield [7]. The latter was again reduced with DIBAL-H in dry CH_2Cl_2 to furnish the corresponding aldehyde 8 [6], which was subjected to Brown's asymmetric allylation [8] with 1M solution of (+)-allyl[di(isopinocamphenyl)borane] [9] in pentane to furnish the chiral allylic alcohol **9** [9] in 88% yield (97% ee, determined by chiral HPLC). The homo allylic secondary OH group in 9 was protected as *tert*-butyl(dimethyl)silyl (TBS) ether 10 by treatment with TBS-Cl and imidazole in 93% yield. Further, this terminal alkene 10 was subjected to OsO4catalyzed dihydroxylation and NaIO₄-mediated cleavage to give the corresponding aldehyde 11 [10] in 86% yield. Aldehyde 11 was reacted with 1-(benzyloxy)-4ethynylbenzene [11] by using Et_2Zn in toluene (10 mmol) and a catalytic solution of (S)-BINOL (1 mmol), PhOH (1 mmol), and (ⁱPrO)₄Ti (2.5 mmol) in dry ether to afford compound 12 in 96% yield (98% de), and its diastereoisomer 13 was achieved by using (R)-BINOL in 94% yield (97% de). Further, each of the two isomers 12 and 13 was subjected to debenzylation using 10% Pd/C in the presence of H_2 gas to give the corresponding phenols 14 and 15 in 75 and 73% yield, respectively. Finally,

a) NiCl₂·6 H₂O, NaBH₄, MeOH, 0° to r.t., 1 h; 92%. *b*) DIBAL-H, CH₂Cl₂, -78° , 0.5 h; 93%. *c*) AllylBIpc₂ (from (+)-Ipc₂BCl and allylmagnesium bromide), Et₂O, -100° , 1 h; 88%. *d*) TBS–Cl, Imidazole, CH₂Cl₂, 0° to r.t., 6 h; 93%. *e*) 1) OsO₄, NMO, acetone/H₂O (9:1), r.t., 2 h; 2) NaIO₄, THF/H₂O (6:4), 0° to r.t., 1 h; 86%. *f*) For **12**: 1-(benzyloxy)-4-ethynylbenzene, Et₂Zn, (*S*)-BINOL, ('PrO)₄Ti, PhOH, 96%; for **13**: 1-(benzyloxy)-4-ethynylbenzene, Et₂Zn, (*R*)-BINOL, ('PrO)₄Ti, PhOH, 94%. *g*) H₂, Pd/C, AcOEt, 24 h; 75 and 73%, resp. *h*) TBAF, THF, 0° to r.t., 12 h; 98 and 96%, resp.

deprotection of the TBS group in **14** and **15** by using Bu_4NF (TBAF) in THF gave the desired target compounds (3*S*,5*S*)-1,7-bis(4-hydroxyphenyl)heptane-3,5-diol (**1**) in 98% yield, and its diastereoisomer **2** in 96% yield.

The other target molecules **3** and **4** were achieved from the intermediate **11**, which was reacted with phenylacetylene by using Et_2Zn in toluene (10 mmol) and a catalytic amount of (*R*)-BINOL (1 mmol), PhOH (1 mmol) and (ⁱPrO)₄Ti (2.5 mmol) in dry Et_2O to obtain compound **16** in 93% yield (97% de). The other diastereoisomer **17** was

a) For **16**: phenylacetylene, Et₂Zn, (*R*)-BINOL, (ⁱPrO)₄Ti, PhOH, 5 h; 93%; for **17**: phenylacetylene, Et₂Zn, (*S*)-BINOL, (ⁱPrO)₄Ti, PhOH, 5 h; 92%. *b*) *Red-Al*[®], THF, 0° to r.t., 0.5 h; 96 and 95%, resp. *c*) TiCl₄, CH₂Cl₂, 0° to r.t., 1 h; 90 and 89% resp.

prepared from the same intermediate **11** by reacting Et_2Zn in toluene and (*S*)-BINOL in 92% yield (98% de). The alkyne intermediates **16** and **17** were reduced with *Red-Al*[®] in THF to obtain the corresponding *trans*-alkenes **18** and **19** in 96 and 95% yields, respectively. Finally, deprotection of the TBS and Bn groups was achieved by treatment of **18** and **19** with TiCl₄ [12] in CH₂Cl₂ to afford the target compounds **3** and **4** in 90 and 89% yields, respectively. The physical and spectroscopic properties of **1** and **3** were in complete agreement with those reported for the natural products [3][4].

In conclusion, the stereoselective syntheses of the natural diarylheptanoids 1 and 3, and its diastereoisomers 2 and 4 were successfully achieved with high yields from the commercially available starting material 4-hydroxybenzaldehyde (5) by applying *Brown*'s asymmetric allylation, and Et_2Zn -mediated diastereoselective alkynylation as the key steps.

The authors K. V, S. P. R, and B. C. are grateful to UGC-CSIR, New Delhi, India, for financial support in the form of fellowship.

Experimental Part

General. All the reagents and solvents were of anal. grade and used without further purification, unless otherwise stated. Technical-grade AcOEt and hexanes used for column chromatography (CC) were distilled before use. THF, when used as solvent for reactions, was freshly distilled from Na/ benzophenone ketyl. All the reactions were performed under N_2 in flame or oven-dried glassware with magnetic stirring. Column chromatography (CC): silica gel (SiO₂, 60–120 mesh) packed in glass

columns. Optical rotations: *Anton Paar MLP 200* modular circular digital polarimeter by using a 2-ml cell with path length of 1 dm. FT-IR Spectra: *PerkinElmer 683* IR spectrophotometer; neat or as thin films in KBr optics; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR spectra: *Bruker-Avance* 300 instrument (at 300 MHz, resp.) at r.t., in CDCl₃; δ in ppm rel. to Me₄Si as internal standed, *J* in Hz. MS: *Agilent Technologies* LCMSD trap SL spectrometer; in *m/z*.

Ethyl 3-[4-(Benzyloxy)phenyl]propanoate (7) [8]. To a cooled (0°) stirred soln. of **6** [7] (7 g, 24.8 mmol) in MeOH (50 ml) was added NiCl₂ · 6 H₂O (4.9 g, 0.2 mmol). To this soln., NaBH₄ (1.8 g, 49.6 mmol) was added portionwise at 0°, and the mixture was stirred at r.t. for 0.5 h. The reaction was quenched with ice-cubes, and the mixture was extracted with AcOEt (3×75 ml). The combined org. layers were washed with brine, dried (Na₂SO₄), and concentrated *in vacuo*. The crude product was purified by CC (AcOEt/hexane) to give **7** (6.47 g, 92%) as colorless liquid. IR (neat): 2981, 1732, 1512, 1174, 736. ¹H-NMR (300 MHz, CDCl₃): 7.40–7.14 (*m*, 5 H); 7.11 (*d*, *J* = 8.6, 2 H); 6.90 (*d*, *J* = 8.6, 2 H); 5.03 (*s*, 2 H); 4.12 (*q*, *J* = 7.1, 14.0, 2 H); 2.89 (*t*, *J* = 7.6, 2 H); 2.53 (*t*, *J* = 8.0, 2 H); 1.23 (*t*, *J* = 7.17, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 172.9; 157.1; 137.0; 132.8; 129.2; 128.4; 127.8; 127.3; 114.7; 69.9; 60.3; 36.1; 30.0; 14.7. ESI-MS: 307 ([*M* + Na]⁺).

(3S)-1-[4-(Benzyloxy)phenyl]hex-5-en-3-ol (9) [6]. To a soln. of 7 (5.0 g, 17.5 mmol) in CH₂Cl₂ (25 ml) was added DIBAL-H (20% in toluene, 8.8 ml, 17.5 mmol) dropwise down the walls of the flask at -70° . After completion of the reaction (monitored by TLC), it was quenched by addition of MeOH (5 ml) at 0° followed by addition of sat. sodium potassium tartrate soln. (10 ml), and was stirred at r.t. for 6 h. The org. layer was separated, and the aq. layer extracted with CH₂Cl₂ (3 × 60 ml). The combined org. layer was washed with brine (2 × 75 ml), dried (Na₂SO₄), and the org. solvent evaporated under reduced pressure. The crude product was purified by CC (SiO₂, 30% AcOEt/hexane) to give aldehyde **8** (3.88 g, 92%) [6] as colorless viscous liquid.

To a soln. of **8** (3 g, 12.4 mmol) in 32 ml of Et₂O at -78° , 1M soln. of (+)-allylBIpc₂ [8] in pentane (14.09 ml, 14.1mmol) was added. The mixture was stirred for 20 h, at -78° and then warmed to 0°. The reaction was quenched by the slow addition of 1 ml of 3N NaOH and 12 ml of 30% H₂O₂, and then the mixture was heated to reflux for 1 h. The aq. layer was extracted (2 × 30 ml) with Et₂O. The combined org. layers were washed with sat. NaHCO₃, H₂O, brine, dried (MgSO₄), and concentrated *in vacuo*. The crude product was purified by CC (30% AcOEt/hexane) to afford **9** (3.10 g, 88%) as colorless oil. $[a]_{D}^{24} = -10$ (c = 1.6, CHCl₃) ($[a]_{D}^{24} = -16$ (c = 1.8, CHCl₃) [9]). IR (neat): 3440, 2924, 2850, 1610, 1508, 1457, 1377, 1236, 1175, 1018. ¹H-NMR (300 MHz, CDCl₃): 7.40–7.13 (m, 5 H); 7.07 (d, J = 8.7, 2 H); 6.88 (d, J = 8.7, 2 H); 5.5–5.2 (m, 1 H); 5.19–5.07 (m, 1 H); 5.02 (s, 2 H); 3.69–3.57 (m, 1 H); 2.80–2.56 (m, 2 H); 2.35–2.12 (m, 2 H); 1.79–1.68 (m, 2 H); 1.58 (br. s, 1 H). ¹³C-NMR (75 MHz, CDCl₃): 157.0; 137.2; 129.3; 128.5; 127.8; 127.4; 118.3; 114.5; 69.0; 42.0; 38.5; 31.1. ESI-MS: 305 ([M+Na]⁺).

(((3S)-1-[4-(Benzyloxy)phenyl]hex-5-en-3-yl]oxy) (tert-butyl)dimethylsilane (10). To a stirred soln. of **9** (2.4 g, 8.49 mmol) in CH₂Cl₂ (15 ml) was added imidazole (1.73 g, 25.49 mmol), followed by (*tert*-butyl)(dimethyl)silyl chloride (2.55 g, 16.98 mmol) at 0°. The mixture was stirred at r.t. for 24 h. After completion of the reaction, the mixture was diluted with H₂O (20 ml) and extracted with CH₂Cl₂ (2 × 20 ml). The combined org. layers were washed with brine (20 ml), dried (Na₂SO₄), and concentrated, the crude product was purified by CC (5% AcOEt/hexane) to give **10** (3.13 g, 93%) as colorless oil. $[\alpha]_{2}^{D4} = -10$ (c = 1.2, CHCl₃). IR (neat): 2932, 1748, 1512, 1250, 833. ¹H-NMR (300 MHz, CDCl₃): 7.46 – 7.29 (m, 5 H); 7.08 (d, J = 8.49, 2 H); 6.89 (d, J = 8.49, 2 H); 5.89 – 5.74 (m, 1 H); 5.04 (t, J = 8.8, 4 H); 3.80 – 3.70 (m, 1 H); 2.71 – 2.46 (m, 2 H); 2.26 (t, J = 6.6, 2 H); 1.78 – 1.64 (m, 2 H); 0.91 (s, 9 H); 0.03 (s, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 156.8; 137.1; 135.0; 134.9; 129.1; 128.4; 127.8; 127.4; 116.8; 114.6; 71.5; 69.9; 41.8; 38.8; 30.8; 29.6; 25.0; 4.4. ESI-MS: 419 ([M + Na]⁺).

(3S)-5-[4-(Benzyloxy)phenyl]-3-[[tert-butyl(dimethyl)silyl]oxy]pentanal (11) [10]. To a soln. of 10 (2.5 g, 7.5 mmol) in a mixture of acetone/H₂O 3:1 (20 ml) was added OsO₄ (0.48 ml, 4% aq. soln., 0.075 mmol) and N-methylmorpholine N-oxide (NMO; 1.7 g, 2.6 mmol) at 25°, and stirred for 5 h, the solvent was evaporated, and the residue was extracted with AcOEt (30 ml). The org. layers were washed with brine (10 ml), dried (Na₂SO₄), and concentrated *in vacuo*. To a soln. of above crude diol in a mixture of THF/H₂O 4:1 (50 ml), NaIO₄ (2.4 g, 11.6 mol) was added, and the mixture was stirred for 1 h at 25°. The solid was removed by filtration, and the filtrate was extracted with AcOEt (40 ml). The org. layers were washed with brine (10 ml), dried (Na₂SO₄), and concentrated *in vacuo*. The crude aldehyde was

purified by CC (5% AcOEt/hexane) to give aldehyde **11** (2.16 g, 86%) as colorless liquid. $[a]_D^{24} = -0.1$ (c = 0.1, CHCl₃). IR (neat): 3425, 2926, 1725, 1511, 1243. ¹H-NMR (300 MHz, CDCl₃): 9.81 (t, J = 2.2, 1 H); 7.4–7.30 (m, 5 H); 7.08 (d, J = 8.5, 2 H); 6.90 (d, J = 8.5, 2 H); 5.04 (s, 2 H); 4.26–4.21 (m, 1 H); 2.63–2.56 (m, 4 H); 1.86–1.80 (m, 2 H); 0.9 (s, 9 H); 0.07 (s, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 202.0; 157.0; 139.2; 137.0; 133.9; 129.1; 128.5; 127.8; 127.4; 114.8; 114.0; 70.0; 67.6; 50.7; 39.7; 31.8; 30.5; 25.7; – 4.41; – 4.66. ESI-MS: 437 ([M + K]⁺).

(3R,5S)- and (3S,5S)-1,7-Bis[4-(benzyloxy)phenyl]-5-{[tert-butyl(dimethyl)silyl]oxy}hept-1-yn-3-ol (12 and 13, resp.). To a soln. of Et_2Zn (0.134, 1.1 m) in toluene (12 ml, 10.0 mmol) was added a soln. of 1-(benzyloxy)-4-ethynylbenzene (2.08 g, 10.0 mmol) in dry toluene (3 ml) at r.t., and the mixture was heated for 1 h at reflux. A soln. of BINOL ((S)-BINOL and (R)-BINOL for 12 and 13, resp.; 0.286 g, 1.0 mmol), PhOH (1 ml, 1.0 mmol), and $(PrO)_4$ Ti (0.710 ml, 2.5 mmol) in anh. Et₂O (3 ml) was stirred for 30 min. This soln. was added to the mixture, which was stirred for 1 h at r.t. before adding aldehyde 11 (1 g, 2.5 mmol). The entire mixture was stirred for 4 h at r.t., after completion of the reaction, the reaction was quenched with a NH₄Cl soln. (12 ml), and the mixture was extracted with AcOEt (2 \times 10 ml). The combined org. layer was washed with $2N \text{ NH}_4\text{Cl}(2 \times 5 \text{ ml})$, $NaHCO_3(2 \times 5 \text{ ml})$, and brine (10 ml), dried (MgSO₄), and evaporated under reduced pressure. The crude residue was separated by CC (7% AcOEt/hexane) to give 12 (1.46 g, 96%) with 98% de (determined by RP-HPLC (Atlantis dC_{18} column, 4.6×150 , 5 µm; mobile phase, 80% MeCN in H₂O, flow rate, 1.0 ml/min, detection at 210 nm, $t_{\rm R}$ 32.152 min) as colorless oil. $[a]_{24}^{24} = -7.5$ (c = 0.4, CHCl₃). IR (neat): 3448, 2925, 1508, 1244, 832. ¹H-NMR (300 MHz, CDCl₃): 7.46 – 7.29 (m, 12 H); 7.10 (d, J = 8.3, 2 H); 6.9 (d, J = 8.3, 6 H); 5.04 (d, J = 5.2, 4 H); 4.88-4.81 (*m*, 1 H); 4.23-4.09 (*m*, 1 H); 2.64-2.49 (*m*, 2 H); 2.06-1.86 (*m*, 4 H); 0.92 (*s*, 9 H); 0.11 (s, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 158.8; 157.0; 137.1; 136.1; 134.2; 133.1; 129.2; 128.6; 128.6; 128.1; 127.9; 127.5; 125.8; 114.8; 88.8; 84.5; 70.0; 60.4; 42.7; 38.9; 30.5; 25.9; -4.22; -4.54. ESI-MS: 629 ($[M + Na]^+$).

Data of **13**. Colorless oil. Yield: 1.43 g (94%). 97% de (determined by RP-HPLC (*Atlantis dC*₁₈ column, 4.6 × 150, 5 μm; mobile phase, 80% MeCN in H₂O, flow rate, 1.0 ml/min, detection at 210 nm, $t_{\rm R}$ 26.069 min). $[a]_{\rm D}^{24} = -17.5 \ (c = 0.1, {\rm CHCl}_3)$. IR (neat): 3448, 2925, 1508, 1244, 832. ¹H-NMR (300 MHz, CDCl₃): 7.12–7.06 (*m*, 12 H); 7.10 (*d*, *J* = 8.3, 2 H); 6.90 (*d*, *J* = 8.3, 6 H); 5.04 (*d*, *J* = 5.2, 4 H); 4.79–4.72 (*m*, 1 H); 4.07–3.98 (*m*, 1 H); 2.65–2.53 (*m*, 2 H); 1.97–1.74 (*m*, 4 H); 0.92 (*s*, 9 H); 0.11 (*s*, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 158.8; 157.0; 137.1; 136.1; 134.2; 133.1; 129.2; 128.6; 128.6; 128.1; 127.9; 127.5; 125.8; 114.8; 88.8; 84.5; 70.0; 60.4; 42.7; 38.9; 30.5; 25.9; -4.22; -4.54. ESI-MS: 629 ([*M*+Na]⁺).

4,4'-[(3\$,5\$)- and (3\$,5\$R)-3-[[tert-Butyl(dimethyl)silyl]oxy]-5-hydroxyheptane-1,7-diyl]diphenol (14 and 15, resp.). 10% Pd/C (0.008 g, 0.00008 mmol) was added to a soln. of 12 and 13 (0.5 g, 0.0008 mmol) in AcOEt (5 ml). The mixture was stirred overnight under H₂ atmosphere. After the completion of reaction, the mixture was filtered through *Celite*, and the resulting filtrate was concentrated *in vacuo*. The residue was purified by CC (40% AcOEt/hexane) to give 14 (0.265 g, 75%) as colorless liquid. $[a]_{2}^{D} = -5$ (c = 0.3, CHCl₃). IR (neat): 3404, 2930, 1513, 1244, 831. ¹H-NMR (300 MHz, CDCl₃): 7.02 (dd, J = 8.3, 16.6, 4 H); 6.74 (dd, J = 6.7, 8.3, 4 H); 5.13 (br. *s*, 1 H); 4.99 (br. *s*, 1 H); 4.03 (m, 2 H); 3.74–3.65 (m, 1 H); 2.76–2.41 (m, 4 H); 1.91–1.69 (m, 4 H); 1.68–1.58 (m, 2 H); 0.89 (s, 9 H); 0.08 (s, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 153.8; 133.6; 129.3; 115.2; 71.7; 68.1; 40.6; 39.5; 38.0; 31.3; 30.7; 25.8; -4.62; -4.71. ESI-MS: 453 ([M+Na]).

Data of **15**. Colorless liquid. Yield: 0.258 g (73%). $[a]_D^{34} = -7.0 \ (c = 0.4, \text{CHCl}_3)$. IR (neat): 3404, 2930, 1513, 1250, 831.¹H-NMR (300 MHz, CDCl₃): 7.02 (*dd*, J = 8.3, 16.6, 4 H); 6.75 (*dd*, J = 4.4, 8.3, 4 H); 5.13 (br. *s*, 1 H); 4.99 (*m*, 1 H); 4.07 – 3.97 (*m*, 1 H); 3.75 – 3.64 (*m*, 1 H); 2.76 – 2.45 (*m*, 4 H); 1.92 – 1.72 (*m*, 2 H); 1.72 – 1.58 (*m*, 4 H); 0.91 (*s*, 9 H); 0.09 (*s*, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 153.9; 133.6; 129.3; 115.2; 72.9; 70.7; 60.5; 42.5; 39.9; 39.3; 30.7; 30.0; 25.8; –4.0; –4.7. ESI-MS: 453 ([M + Na]⁺).

(3S,5S)- and (3R,5S)-1,7-Bis(4-hydroxyphenyl)heptane-3,5-diol (1 and 2, resp.). To a soln. of 14 and 15 (50 g, 0.116 mmol) in THF (3 ml), TBAF (1.0m soln. in THF, 0.116 ml, 0.116 mmol) was added dropwise at 0°. The mixture was stirred at r.t. for 12 h. After completion of the reaction, the solvent was removed *in vacuo*, and the crude residue was separated by CC (50% AcOEt/hexane) to afford 1 (34 mg, 96%) as colorless oil. $[a]_{24}^{24} = -15$ (c = 0.4, MeOH). IR (neat): 3448, 2924, 1633, 1220, 771. ¹H-NMR (300 MHz, CDCl₃): 7.02 (d, J = 8.3, 4 H); 6.74 (d, J = 9.0, 4 H); 4.04 (br. *s*, 2 H); 3.50–3.46 (m, 2 H);

2.80–2.65 (*m*, 4 H); 1.87–1.60 (*m*, 6 H). ¹³C-NMR (300 MHz, CDCl₃): 154.2; 132.8; 128.7; 114.6; 67.4; 42.8; 39.1; 30.6. ESI-MS: 339.2 ([*M* + Na]⁺).

Data of **2**. Yield: 34 mg (95%). Colorless oil. $[a]_{2^4}^{2^4} = -5$ (c = 0.8, MeOH). IR (neat): 3449, 2922, 1636, 1223, 762. ¹H-NMR (300 MHz, CDCl₃): 7.02 (d, J = 7.5, 4 H); 6.74 (d, J = 7.5, 4 H); 3.38–3.32 (m, 2 H); 2.76–2.49 (m, 4 H); 1.82–1.66 (m, 4 H); 1.62–1.55 (m, 2 H). ¹³C-NMR (300 MHz, CDCl₃): 154.3; 132.8; 129.0; 114.9; 71.5; 42.4; 39.5; 30.0. ESI-MS: 339.2 ($[M + Na]^+$).

(38,58)- and (38,58)-7-[4-(Benzyloxy)phenyl]-5-{[tert-butyl(dimethyl)silyl]oxy}-1-phenylhept-1yn-3-ol (16 and 17, resp.). To a soln. of Et₂Zn in toluene (10 ml, 10.0 mmol) was added a soln. of phenylacetylene (1.02 g, 10.0 mmol) in dry toluene (1 ml) at r.t., and the mixture was heated at reflux for 1 h. A catalyst soln. of BINOL ((R)- and (S)-BINOL for 16 and 17, resp.) (0.286 g, 1.0 mmol), PhOH (94 mg, 1.0 mmol), and $(^{\text{i}}\text{PrO})_4\text{Ti}$ (0.78 ml, 2.5 mmol) in anh. Et₂O (3 ml) was stirred for 35 min. This soln. was added to the mixture, and the mixture was stirred for 1 h at r.t. before adding aldehyde 11 (1 g, 2.5 mmol). The entire mixture was stirred for 4 h at r.t., after completion of the reaction, the reaction was quenched with NH_4Cl (10 ml) and extracted with AcOEt (2 × 10 ml). The combined org. layer was washed with 2N HCl $(2 \times 5 \text{ ml})$, NaHCO₃ $(2 \times 5 \text{ ml})$, and brine (10 ml), dried (MgSO₄), and evaporated under reduced pressure. The crude product was purified by CC (5% AcOEt/hexane) to give 16 (1.16 g, 93%) with 97% de (determined by RP-HPLC (Atlantis dC_{18} column, $4.6 \times 150, 5 \mu$ m, mobile phase, 80% MeCN in H₂O, flow rate, 1.0 ml/min, detection at 210 nm, $t_{\rm R}$ 20.274 min) as colorless oil. $[a]_{24}^{24} = -7.5$ (c = 0.1, CHCl₃). IR (neat): 3449, 2929, 1640, 1245, 765. ¹H-NMR (300 MHz, CDCl₃): 7.45-7.27 (*m*, 10 H); 7.09 (*d*, *J* = 8.3, 2 H); 6.87 (*d*, *J* = 8.3, 2 H); 5.01 (*s*, 2 H); 4.81 – 4.74 (*m*, 1 H); 4.07 – 3.99 (*m*, 1 H); 2.68 – 2.52 (*m*, 2 H); 2.13–1.80 (*m*, 4 H); 0.91 (*s*, 9 H); 0.09 (*s*, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 157.0; 137.2; 134.4; 131.7; 129.2; 128.5; 128.3; 127.9; 127.4; 122.6; 114.8; 89.9; 85.2; 70.2; 61.6; 44.0; 39.8; 30.2; 25.9; -10.2; 10.2;4.1; -4.65. ESI-MS: 523 ($[M + Na]^+$).

Data of **17**. Colorless oil. Yield: 1.15 g (92%). 97% de (determined by RP-HPLC (*Atlantis dC*₁₈ column, 4.6×150 , 5 µm, mobile phase, 80% MeCN in H₂O, flow rate, 1.0 ml/min, detection at 210 nm, $t_{\rm R}$ 15.956 min). [a]_D²⁴ = -22.5 (c = 0.2, CHCl₃). IR (neat): 3446, 2928, 1074, 769. ¹H-NMR (300 MHz, CDCl₃): 7.46-7.27 (m, 10 H); 7.1 (d, J = 8.3, 2 H); 6.89 (d, J = 8.3, 2 H); 5.03 (s, 2 H); 4.90-4.83 (m, 1 H); 4.24-4.16 (m, 1 H); 2.65-2.54 (m, 2 H); 2.07-2.00 (m, 2 H); 1.92-1.82 (m, 2 H); 0.92 (s, 9 H); 0.11 (s, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 157; 137.1; 134.1; 131.6; 129.1; 128.5; 128.2; 127.8; 127.4; 122.7; 114; 90.0; 84.5; 70.0; 60.4; 42.4; 38.9; 30.4; 25.8; -4.28; -4.6. ESI-MS: 523 ([M+Na]⁺).

(1E,3S,5S)- and (1E,3R,5S)-7-[4-(Benzyloxy)phenyl]-5-{[tert-butyl(dimethyl)silyl]oxy]-1-phenylhept-1-en-3-ol (**18** and **19**, resp.). To a cooled soln. (0°) of propargylic alcohols **16** and **17** (0.2 g, 0.4 mmol) in THF (10 ml), Red-Al® (70 wt.-% in toluene, 1.82 ml, 1 mmol) was added dropwise. The mixture was stirred for 0.5 h at 0°, and the reaction was carefully quenched with a sat. aq. Na₂SO₄ soln., AcOEt was added, and the mixture was warmed to r.t. The org. layer was washed with brine, and the combined org. extracts were dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by CC (30% AcOEt/hexane) to provide allylic alcohol **18** (0.192 g, 96%) as colorless oil. $[a]_{24}^{D4} = -25$ (c = 0.4, CHCl₃). IR (neat): 3414, 2923, 1509, 1239, 750. ¹H-NMR (300 MHz, CDCl₃): 7.45 - 7.28 (m, 10 H); 7.11 (d, J = 8.5, 2 H); 6.89 (d, J = 8.6, 2 H); 6.62 (d, J = 15.8, 1 H); 6.27 (dd, J = 6.2, 16.0, 1 H); 5.03 (s, 2 H); 4.68 - 4.63 (m, 1 H); 4.04 - 3.98 (m, 1 H); 2.77 - 2.59 (m, 2 H); 1.89 - 1.74 (m, 4 H); 0.9 (s, 9 H); 0.11 (s, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 157.0; 137.1; 136.5; 134.1; 131.8; 130.0; 129.2; 128.5; 127.8; 127.6; 127.4; 126.4; 114.8; 70.6; 70.0; 68.8; 42.5; 39.3; 31.7; 30.9; 25.8; -3.99; -4.63. ESI-MS: 525 ([M + Na]⁺).

Data of **19**. Yield: 0.190 g (95%). Colorless oil. $[a]_{2}^{24} = -6.6$ (c = 0.1, CHCl₃). IR (neat): 3449, 2929, 1510, 1244, 1075, 773. ¹H-NMR (300 MHz, CDCl₃): 7.44–7.28 (m, 10 H); 7.08 (d, J = 8.5, 2 H); 6.69 (d, J = 8.5, 2 H); 6.62 (d, J = 15.8, 2 H); 6.27 (dd, J = 6.1, 15.8, 1 H); 5.03 (s, 2 H); 4.50–4.44 (m, 1 H); 4.06–3.99 (m, 1 H); 2.67–2.52 (m, 2 H); 1.86–1.80 (m, 4 H); 0.93 (s, 9 H); 0.11 (s, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 156.9; 137.1; 136.1; 134.3; 132.1; 129.6; 129.1; 128.4; 127.8; 127.4; 127.3; 126.4; 114.8; 113.8; 71.9; 71.5; 69.9; 43.2; 39.8; 30.0; 25.8; -3.99; -4.63. ESI-MS: 525 ($[M + Na]^+$).

(1E,3S,5S)- and (1E,3R,5S)-7-(4-Hydroxyphenyl)-1-phenylhept-1-ene-3,5-diol (3 and 4, resp.). To a stirred soln. of 18 and 19 (50 mg, 0.09 mol) in CH₂Cl₂ (5 ml), TiCl₄ (1M in CH₂Cl₂, 0.07 ml, 0.03 mmol) was added at 0°, and the mixture was stirred at the same temp. for 1 h. The reaction was quenched with solid NaHCO₃ (30 mg), and filtered, the solvent was removed under reduced pressure. The crude residue

was separated by CC (50% AcOEt; hexane) to afford **3** (26 mg, 89%) as colorless sticky liquid. $[a]_{2}^{D4} = -9$ (c = 0.3, MeOH). IR (neat): 3449, 2925, 1513, 1254; 749. ¹H-NMR (300 MHz, CDCl₃): 7.41–7.20 (m, 5 H); 7.04 (d, J = 8.4, 2 H); 6.73 (d, J = 8.4, 2 H); 6.59 (d, J = 15.8, 1 H); 6.26 (dd, J = 6.2, 16.0, 1 H); 3.96–3.87 (m, 1 H); 3.37–3.33 (m, 1 H); 2.77–2.53 (m, 2 H); 1.82–1.70 (m, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 154.1; 136.3; 132.6; 131.9; 130.5; 128.7; 128.5; 127.7; 126.6; 125.6; 114.0; 68.7; 67.0; 43.2; 39.0; 30.3. ESI-MS: 321.0 ($[M + Na]^+$).

Data of **4**. Yield: 26 mg (88%). Colorless sticky liquid. $[a]_D^{24} = 19.0$ (c = 0.9, CHCl₃). IR (neat): 3449, 2925, 1254, 749. ¹H-NMR (300 MHz, CDCl₃): 7.41 – 7.20 (m, 5 H); 7.03 (d, J = 8.3, 2 H); 6.75 (d, J = 8.1, 2 H); 6.58 (d, J = 15.8, 1 H); 6.21 (dd, J = 6.4, 15.8, 1 H); 4.54 – 4.44 (m, 1 H); 3.95 – 3.78 (m, 1 H); 2.73 – 2.53 (m, 2 H); 1.81 – 1.67 (m, 4 H). ¹³C-NMR (75 MHz, CDCl₃): 154.0; 136.1; 132.3; 131.1; 130.5; 129.3; 128.3; 127.5; 127.3; 126.5; 125.4; 114.1; 70.5; 68.5; 43.0; 39.0; 29.9. ESI-MS: 321 ([M + Na]⁺).

REFERENCES

- P. Claeson, P. Tuchinda, V. Reutrakul, J. Indian Chem. Soc. 1994, 71, 509; G. M. Keserü, M. Nógrádi, Stud. Nat. Prod. Chem. 1995, 17, 357; P. Claeson, U. P. Claeson, P. Tuchinda, V. Reutrakul, Stud. Nat. Prod. Chem. 2002, 26, 881; H. Lv, G. She, Nat. Prod. Commun. 2010, 5, 1687.
- [2] G.-J. Fan, Y.-H. Kang, Y. N. Han, B. H. Han, *Bioorg. Med. Chem. Lett.* 2007, *17*, 6720; N. X. Nhiem, P. V. Kiem, C. V. Minh, N. Kim, S. Park, H. Y. Lee, E. S. Kim, Y. H. Kim, S. Kim, Y.-S. Koh, S. H. Kim, *J. Nat. Prod.* 2013, *76*, 495; H. Mohamad, N. H. Lajis, F. Abas, A. M. Ali, M. A. Sukari, H. Kikuzaki, N. Nakatani, *J. Nat. Prod.* 2005, *68*, 285; D. Shin, K. Kinoshita, K. Koyama, K. Takahashi, *J. Nat. Prod.* 2002, *65*, 1315; H. Wohlmuth, M. A. Deseo, D. J. Brushett, D. R. Thompson, G. MacFarlane, L. M. Stevenson, D. N. Leach, *J. Nat. Prod.* 2010, *73*, 743.
- [3] a) F. J. Wu, J. D. Su, *Zhongguo Nongye Hauxue Huizhi* 1996, 34, 438; b) M. S. Ali, Y. Tezuka, S. Awale, A. H. Banskota, S. Kadota, *J. Nat. Prod.* 2001, 64, 289.
- [4] J.-W. Nam, G.-Y. Kang, A.-R. Han, D. Lee, Y.-S. Lee, E.-K. Seo, J. Nat. Prod. 2011, 74, 2109.
- [5] A.Venkanna, E. Sreedhar, B. Siva, K. S. Babu, K. R. Prasad, J. M. Rao, *Tetrahedron: Asymmetry* 2012, 24, 1010; A.Venkanna, B. Siva, B. Poornima, K. S. Babu, J. M. Rao, *Tetrahedron Lett.* 2014, 55, 403; S. P. Reddy, K. Ashalatha, D. K. Reddy, B. Chinnababu, Y. Venkateswarlu, *Synthesis* 2011, 19, 3180; S. P. Reddy, B. Chinnababu, V. Shekhar, D. K. Reddy, G. V. S. Bhanuprakash, L. R. Velatoor, J. V. Rao, Y. Venkateswarlu, *Bioorg. Med. Chem. Lett.* 2012, 22, 4182.
- [6] P. R. Reddy, C. Sudhakar, J. N. Kumar, B. Das, Helv. Chim. Acta 2013, 96, 289
- [7] S. P. Reddy, B. Chinnababu, Y. Venkateswarlu, Helv. Chim. Acta 2014, 97, 999.
- [8] B. Chinnababu, S. P. Reddy, C. B. Rao, K. Rajesh, Y. Venkateswarlu, Helv. Chim. Acta 2010, 93, 1960.
- [9] T. I. Richardson, S. D. Rychnovsky, J. Org. Chem. 1996, 61, 4219.
- [10] B. Das, K. Suneel, G. Satyalaxmi, D. N. Kumar, Tetrahedron: Asymmetry 2009, 20, 1536.
- [11] V. Shekhar, D. K. Reddy, S. P. Reddy, P. Prabhakar, Y. Venkateswarlu, *Eur. J. Org. Chem.* 2011, 4460;
 G. Gao, D. Moore, R.-G. Xie, L. Pu, *Org. Lett.* 2002, *4*, 4143; Z.-B. Li, L. Pu, *Org. Lett.* 2004, *6*, 1065;
 Y. Georges, Y. Allenbach, X. Ariza, J. M. Campagne, J. Garcia, *J. Org. Chem.* 2004, *69*, 7387.
- [12] U. Ramulu, D. Ramesh, S. Rajaram, S. P. Reddy, K. Venkatesham, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2012, 23, 117.

Received March 23, 2015